If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4x=68
We move all terms to the left:
3x^2-4x-(68)=0
a = 3; b = -4; c = -68;
Δ = b2-4ac
Δ = -42-4·3·(-68)
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8\sqrt{13}}{2*3}=\frac{4-8\sqrt{13}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8\sqrt{13}}{2*3}=\frac{4+8\sqrt{13}}{6} $
| X+1/2*(6x-4)=6 | | x^2+2,5x-6=0 | | (x+2)^2=22 | | 2x÷3=2 | | (6y+8)-(5+5y)=12 | | 5x-9x+31=2x+37 | | 3+|2x+5|=17 | | x=0,6x+384 | | 4w+4=2w+10 | | x+x+2=64+x^2 | | 2x-x^2=62 | | 4/8x2-1=7 | | -8y-9=9-6y | | -3u=-10-4u | | -p+10=-3p-2 | | x+17+20=47 | | x+17+20=37 | | 8q-10=10+10q | | 3x-56=119 | | r-8=-3-4r | | -6h+1=-9-7h | | -10+9f=8f | | 3/7x=5/3 | | -3t-8=-4t | | 8+4v=2v | | -8g=-6g-6 | | 9c=-4+10c | | 4h+10=2h | | x-(16/100)x=15.96 | | -3d=-4d−2 | | 2x+1-x=2(2)+1-2= | | -3+5z=4z |